博客
关于我
动态规划(最高阶)
阅读量:54 次
发布时间:2019-02-26

本文共 2500 字,大约阅读时间需要 8 分钟。

序列类动态规划问题解析

动态规划思路总结

在处理序列类动态规划问题时,核心思路是通过定义状态并建立状态转移方程,将问题逐步拆解。这种方法的关键在于如何找到当前状态与之前所有状态的联系,尤其是在处理子序列问题时,需要考虑元素的顺序和位置关系。

以下是几个经典问题的分析示例:


问题1:最长上升子序列

问题描述

给定一个无序整数数组,找到其中最长上升子序列的长度。

示例

输入: [10,9,2,5,3,7,101,18]输出: 4解释: 最长的上升子序列是 [2,3,7,101],长度为4。

问题解析

  • 问题拆解

    最长上升子序列问题的关键在于确定每个位置是否可以与前面某个位置形成递增的子序列。我们可以定义 dp[i] 为以 nums[i] 结尾的子序列的最大长度。

  • 状态定义

    dp[i] 表示以 nums[i] 结尾的最长上升子序列的长度。通过分析,可以发现 dp[i] 的值取决于前面所有 nums[j] < nums[i]dp[j] 的最大值加1。

  • 递推方程

    对于每个位置 i,我们需要检查前面所有位置 j,并找到满足 nums[j] < nums[i] 的最大 dp[j]

    dp[i] = max(dp[j] for j in 0..i-1 if nums[j] < nums[i]) + 1
  • 实现

    直接暴力枚举所有可能的子序列会导致时间复杂度为 O(n^2),虽然不够高效,但可以帮助理解问题结构。优化方案将在后续内容中详细介绍。

  • 代码实现

    public int lengthOfLIS(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    int[] dp = new int[nums.length];    Arrays.fill(dp, 1);    int max = 0;    for (int i = 0; i < nums.length; ++i) {        for (int j = 0; j < i; ++j) {            if (nums[i] > nums[j]) {                dp[i] = Math.max(dp[j] + 1, dp[i]);            }        }        max = Math.max(max, dp[i]);    }    return max;}

    问题2:打家劫舍

    问题描述

    你是一个专业的小偷,计划偷窃沿街的房屋。相邻房屋装有防盗系统,同一晚上不能进入相邻房屋。目标是偷窃到最高金额。

    问题解析

  • 问题拆解

    抢第 i 个房子可以选择抢或不抢。如果抢,则前一个房子不能抢;如果不抢,则前一个房子可以抢。

  • 状态定义

    定义 dp[i] 为抢到第 i 个房子的最大金额。抢到第 i 个房子时,只能抢第 i-2 个房子。

  • 递推方程

    dp[i] = max(dp[i-1], dp[i-2] + nums[i-1])

    其中 dp[0] 表示不抢第一个房子,dp[1] 表示抢第一个房子。

  • 代码实现

    public int rob(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    int n = nums.length;    if (n == 1) {        return nums[0];    }    int[] dp = new int[n + 1];    dp[1] = nums[0];    for (int i = 2; i <= n; ++i) {        dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);    }    return dp[n];}

    问题3:打家劫舍plus

    问题描述

    房屋排列成一个圆圈,防盗系统同样有效。求偷窃到的最高金额。

    问题解析

  • 问题拆解

    房屋形成一个圆圈,意味着最后一个房子与第一个房子相邻。我们可以将问题分解为两种情况:

    • 不抢第一个房子,直接考虑房子 [1, n]
    • 不抢最后一个房子,直接考虑房子 [0, n-1]
  • 递推方程

    使用之前的 rob 函数计算两种情况的最大值。

  • 代码实现

    public int rob(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    if (nums.length == 1) {        return nums[0];    }    int n = nums.length;    return Math.max(        rob(Arrays.copyOfRange(nums, 0, n - 1)),        rob(Arrays.copyOfRange(nums, 1, n))    );}public int robI(int[] nums) {    if (nums == null || nums.length == 0) {        return 0;    }    int n = nums.length;    int[] dp = new int[n + 1];    dp[1] = nums[0];    for (int i = 2; i <= n; ++i) {        dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);    }    return dp[n];}

    总结

    序列类动态规划问题的核心在于如何定义状态并建立状态转移关系。通过以上案例,我们可以看到动态规划在处理子序列问题中的广泛应用。优化算法的空间和时间复杂度将在后续内容中详细探讨。

    转载地址:http://ftfz.baihongyu.com/

    你可能感兴趣的文章
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
    查看>>
    NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
    查看>>
    NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
    查看>>
    NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
    查看>>
    NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
    查看>>
    NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
    查看>>
    NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
    查看>>
    NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
    查看>>
    NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
    查看>>
    NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
    查看>>
    NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
    查看>>
    NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
    查看>>